Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301072, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348928

RESUMO

The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.

2.
Nanoscale ; 16(6): 2904-2912, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38054755

RESUMO

The interaction of nanoparticles with biological media is a topic of general interest for drug delivery systems and among those for active nanoparticles, also called nanomotors. Herein, we report the use of super resolution microscopy, in particular, stochastic optical reconstruction microscopy (STORM), to characterize the formation of a protein corona around active enzyme-powered nanomotors. First, we characterized the distribution and number of enzymes on nano-sized particles and characterized their motion capabilities. Then, we incubated the nanomotors with fluorescently labelled serum proteins. Interestingly, we observed a significant decrease of protein corona formation (20%) and different composition, which was studied by proteomic analysis. Moreover, motion was not hindered, as nanomotors displayed enhanced diffusion regardless of the protein corona. Elucidating how active particles interact with biological media and maintain their self-propulsion after protein corona formation will pave the way for the use of these systems in complex biological fluids in biomedicine.


Assuntos
Nanopartículas , Coroa de Proteína , Proteômica , Sistemas de Liberação de Medicamentos
3.
Adv Drug Deliv Rev ; 204: 115138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980951

RESUMO

Despite the enormous potential of nanomedicines to shape the future of medicine, their clinical translation remains suboptimal. Translational challenges are present in every step of the development pipeline, from a lack of understanding of patient heterogeneity to insufficient insights on nanoparticle properties and their impact on material-cell interactions. Here, we discuss how the adoption of advanced optical microscopy techniques, such as super-resolution optical microscopies, correlative techniques, and high-content modalities, could aid the rational design of nanocarriers, by characterizing the cell, the nanomaterial, and their interaction with unprecedented spatial and/or temporal detail. In this nanomedicine arena, we will discuss how the implementation of these techniques, with their versatility and specificity, can yield high volumes of multi-parametric data; and how machine learning can aid the rapid advances in microscopy: from image acquisition to data interpretation.


Assuntos
Nanopartículas , Nanoestruturas , Humanos , Nanomedicina , Microscopia , Imagem Óptica
4.
ACS Appl Mater Interfaces ; 15(51): 59134-59144, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38102079

RESUMO

Degradable polymeric micelles are promising drug delivery systems due to their hydrophobic core and responsive design. When applying micellar nanocarriers for tumor delivery, one of the bottlenecks encountered in vivo is the tumor tissue barrier: crossing the dense mesh of cells and the extracellular matrix (ECM). Sometimes overlooked, the extracellular matrix can trap nanoformulations based on charge, size, and hydrophobicity. Here, we used a simple design of a microfluidic chip with two types of ECM and MCF7 spheroids to allow "high-throughput" screening of the interactions between biological interfaces and polymeric micelles. To demonstrate the applicability of the chip, a small library of fluorescently labeled polymeric micelles varying in their hydrophilic shell and hydrophobic core forming blocks was studied. Three widely used hydrophilic shells were tested and compared, namely, poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid), along with two enzymatically degradable dendritic hydrophobic cores (based on hexyl or nonyl end groups). Using ratiometric imaging of unimer:micelle fluorescence and FRAP inside the chip model, we obtained the local assembly state and dynamics inside the chip. Notably, we observed different micelle behaviors in the basal lamina ECM, from avoidance of the ECM structure to binding of the poly(acrylic acid) formulations. Binding to the basal lamina correlated with higher uptake into MCF7 spheroids. Overall, we proposed a simple microfluidic chip containing dual ECM and spheroids for the assessment of the interactions of polymeric nanocarriers with biological interfaces and evaluating nanoformulations' capacity to cross the tumor tissue barrier.


Assuntos
Micelas , Neoplasias , Humanos , Polímeros/química , Polietilenoglicóis/química , Matriz Extracelular , Dispositivos Lab-On-A-Chip , Portadores de Fármacos/química
5.
ACS Nano ; 17(20): 20167-20178, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37802067

RESUMO

The formation of a protein corona, where proteins spontaneously adhere to the surface of nanomaterials in biological environments, leads to changes in their physicochemical properties and subsequently affects their intended biomedical functionalities. Most current methods to study protein corona formation are ensemble-averaging and either require fluorescent labeling, washing steps, or are only applicable to specific types of particles. Here we introduce real-time all-optical nanoparticle analysis by scattering microscopy (RONAS) to track the formation of protein corona in full serum, at the single-particle level, without any labeling. RONAS uses optical scattering microscopy and enables real-time and in situ tracking of protein adsorption on metallic and dielectric nanoparticles with different geometries directly in blood serum. We analyzed the adsorbed protein mass, the affinity, and the kinetics of the protein adsorption at the single particle level. While there is a high degree of heterogeneity from particle to particle, the predominant factor in protein adsorption is surface chemistry rather than the underlying nanoparticle material or size. RONAS offers an in-depth understanding of the mechanisms related to protein coronas and, thus, enables the development of strategies to engineer efficient bionanomaterials.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Soro , Propriedades de Superfície , Nanopartículas/química , Proteínas/química , Adsorção
6.
Nanoscale ; 15(35): 14615-14627, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37614108

RESUMO

Nanoparticles (NPs) are used to encapsulate therapeutic cargos and deliver them specifically to the target site. The intracellular trafficking of NPs dictates the NP-cargo distribution within different cellular compartments, and thus governs their efficacy and safety. Knowledge in this field is crucial to understand their biological fate and improve their rational design. However, there is a lack of methods that allow precise localization and quantification of individual NPs within distinct cellular compartments simultaneously. Here, we address this issue by proposing a correlative light and electron microscopy (CLEM) method combining direct stochastic optical reconstruction microscopy (dSTORM) and transmission electron microscopy (TEM). We aim at combining the advantages of both techniques to precisely address NP localization in the context of the cell ultrastructure. Individual fluorescently-labelled poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) NPs were directly visualized by dSTORM and assigned to cellular compartments by TEM. We first tracked NPs along the endo-lysosomal pathway at different time points, then demonstrated the effect of chloroquine on their intracellular distribution (i.e. endosomal escape). The proposed protocol can be applied to fluorescently labelled NPs and/or cargo, including those not detectable by TEM alone. Our studies are of great relevance to obtain important information on NP trafficking, and crucial for the design of more complex nanomaterials aimed at cytoplasmic/nucleic drug delivery.


Assuntos
Nanopartículas , Nanoestruturas , Microscopia Eletrônica de Transmissão , Núcleo Celular , Endossomos
7.
Adv Mater ; 35(47): e2303909, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572294

RESUMO

Recruiting endogenous antibodies to the surface of cancer cells using antibody-recruiting molecules has the potential to unleash innate immune effector killing mechanisms against antibody-bound cancer cells. The affinity of endogenous antibodies is relatively low, and many currently explored antibody-recruiting strategies rely on targeting over-expressed receptors, which have not yet been identified in most solid tumors. Here, both challenges are addressed by functionalizing poly(propyleneimine) (PPI) dendrimers with both multiple dinitrophenyl (DNP) motifs, as anti-hapten antibody-recruiting motifs, and myristoyl motifs, as universal phospholipid cell membrane anchoring motifs, to recruit anti-hapten antibodies to cell surfaces. By exploiting the multivalency of the ligand exposure on the dendrimer scaffold, it is demonstrated that dendrimers featuring ten myristoyl and six DNP motifs exhibit the highest antibody-recruiting capacity in vitro. Furthermore, it is shown that treating cancer cells with these dendrimers in vitro marks them for phagocytosis by macrophages in the presence of anti-hapten antibodies. As a proof-of-concept, it is shown that intratumoral injection of these dendrimers in vivo in tumor-bearing mice results in the recruitment of anti-DNP antibodies to the cell surface in the tumor microenvironment. These findings highlight the potential of dendrimers as a promising class of novel antibody-recruiting molecules for use in cancer immunotherapy.


Assuntos
Dendrímeros , Animais , Camundongos , Anticorpos , Haptenos , Fagocitose , Dinitrobenzenos , Membrana Celular
8.
Nanoscale ; 15(28): 12008-12024, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37403617

RESUMO

Biodegradable periodic mesoporous organosilica nanoparticles (nanoPMOs) are widely used as responsive drug delivery platforms for targeted chemotherapy of cancer. However, the evaluation of their properties such as surface functionality and biodegradability is still challenging, which has a significant impact on the efficiency of chemotherapy. In this study, we have applied direct stochastic optical reconstruction microscopy (dSTORM), a single-molecule super-resolution microscopy technique, to quantify the degradation of nanoPMOs triggered by glutathione and the multivalency of antibody-conjugated nanoPMOs. Subsequently, the effect of these properties on cancer cell targeting, drug loading and release capability, and anticancer activity is also studied. Due to the higher spatial resolution at the nanoscale, dSTORM imaging is able to reveal the structural properties (i.e., size and shape) of fluorescent and biodegradable nanoPMOs. The quantification of nanoPMOs' biodegradation using dSTORM imaging demonstrates their excellent structure-dependent degradation behavior at a higher glutathione concentration. The surface functionality of anti-M6PR antibody-conjugated nanoPMOs as quantified by dSTORM imaging plays a key role in prostate cancer cell labeling: oriented antibody is more effective than random ones, while high multivalency is also effective. The higher biodegradability and cancer cell-targeting properties of nanorods conjugated with oriented antibody (EAB4H) effectively deliver the anticancer drug doxorubicin to cancer cells, exhibiting potent anticancer effects.


Assuntos
Nanopartículas , Neoplasias da Próstata , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Anticorpos/química , Anticorpos/imunologia , Porosidade , Dióxido de Silício/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Oxirredução , Propriedades de Superfície , Humanos , Linhagem Celular Tumoral
9.
ACS Nano ; 17(12): 11665-11678, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37283555

RESUMO

Decorating nanoparticles with antibodies (Ab) is a key strategy for targeted drug delivery and imaging. For this purpose, the orientation of the antibody on the nanoparticle is crucial to maximize fragment antibody-binding (Fab) exposure and thus antigen binding. Moreover, the exposure of the fragment crystallizable (Fc) domain may lead to the engagement of immune cells through one of the Fc receptors. Therefore, the choice of the chemistry for nanoparticle-antibody conjugation is key for the biological performance, and methods have been developed for orientation-selective functionalization. Despite the importance of this issue, there is a lack of direct methods to quantify the antibodies' orientation on the nanoparticle's surface. Here, we present a generic methodology that enables for multiplexed, simultaneous imaging of both Fab and Fc exposure on the surface of nanoparticles, based on super-resolution microscopy. Fab-specific Protein M and Fc-specific Protein G probes were conjugated to single stranded DNAs and two-color DNA-PAINT imaging was performed. Hereby, we quantitatively addressed the number of sites per particle and highlight the heterogeneity in the Ab orientation and compared the results with a geometrical computational model to validate data interpretation. Moreover, super-resolution microscopy can resolve particle size, allowing the study of how particle dimensions affect antibody coverage. We show that different conjugation strategies modulate the Fab and Fc exposure which can be tuned depending on the application of choice. Finally, we explored the biomedical importance of antibody domain exposure in antibody dependent cell mediated phagocytosis (ADCP). This method can be used universally to characterize antibody-conjugated nanoparticles, improving the understanding of relationships between structure and targeting capacities in targeted nanomedicine.


Assuntos
Anticorpos , Nanopartículas , Fagocitose , Microscopia , DNA
10.
Chem Commun (Camb) ; 59(54): 8332-8342, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37306078

RESUMO

In the last decade, point accumulation for imaging in nanoscale topography (PAINT) has emerged as a versatile tool for single-molecule localization microscopy (SMLM). Currently, DNA-PAINT is the most widely used, in which a transient stochastically binding DNA docking-imaging pair is used to reconstruct specific characteristics of biological or synthetic materials on a single-molecule level. Slowly, the need for PAINT probes that are not dependent on DNA has emerged. These probes can be based on (i) endogenous interactions, (ii) engineered binders, (iii) fusion proteins, or (iv) synthetic molecules and provide complementary applications for SMLM. Therefore, researchers have been expanding the PAINT toolbox with new probes. In this review, we provide an overview of the currently existing probes that go beyond DNA and their applications and challenges.


Assuntos
DNA , Nanotecnologia , Microscopia de Fluorescência/métodos , DNA/química , Nanotecnologia/métodos , Imagem Individual de Molécula/métodos
11.
Angew Chem Int Ed Engl ; 62(35): e202303390, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37158582

RESUMO

The exploitation of low-affinity molecular interactions in protein labeling is an emerging topic in optical microscopy. Such non-covalent and low-affinity interactions can be realized with various concepts from chemistry and for different molecule classes, and lead to a constant renewal of fluorescence signals at target sites. Further benefits are a versatile use across microscopy methods, in 3D, live and many-target applications. In recent years, several classes of low-affinity labels were developed and a variety of powerful applications demonstrated. Still, this research field is underdeveloped, while the potential is huge.

12.
Nanoscale Adv ; 5(8): 2307-2317, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37056621

RESUMO

Barcoding of nano- and micro-particles allows distinguishing multiple targets at the same time within a complex mixture and is emerging as a powerful tool to increase the throughput of many assays. Fluorescent barcoding is one of the most used strategies, where microparticles are labeled with dyes and classified based on fluorescence color, intensity, or other features. Microparticles are ideal targets due to their relative ease of detection, manufacturing, and higher homogeneity. Barcoding is considerably more challenging in the case of nanoparticles (NPs), where their small size results in a lower signal and greater heterogeneity. This is a significant limitation since many bioassays require the use of nano-sized carriers. In this study, we introduce a machine-learning-assisted workflow to write, read, and classify barcoded PLGA-PEG NPs at a single-particle level. This procedure is based on the encapsulation of fluorescent markers without modifying their physicochemical properties (writing), the optimization of their confocal imaging (reading), and the implementation of a machine learning-based barcode reader (classification). We found nanoparticle heterogeneity as one of the main factors that challenges barcode separation, and that information extracted from the dyes' nanoscale confinement effects (such as Förster Resonance Energy Transfer, FRET) can aid barcode identification. Moreover, we provide a guide to reaching the optimal trade-off between the number of simultaneous barcodes and classification accuracy supporting the use of this workflow for a variety of bioassays.

13.
Nanoscale Adv ; 5(5): 1378-1385, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36866255

RESUMO

The concept of selective tumor targeting using nanomedicines has been around for decades; however, no targeted nanoparticle has yet reached the clinic. A key bottleneck is the non-selectivity of targeted nanomedicines in vivo, which is attributed to the lack of characterization of their surface properties, especially the ligand number, thereby calling for robust techniques that allow quantifiable outcomes for an optimal design. Multivalent interactions comprise multiple copies of ligands attached to scaffolds, allowing simultaneous binding to receptors, and they play an important role in targeting. As such, 'multivalent' nanoparticles facilitate simultaneous interaction of weak surface ligands with multiple target receptors resulting in higher avidity and enhanced cell selectivity. Therefore, the study of weak binding ligands for membrane-exposed biomarkers is crucial for the successful development of targeted nanomedicines. Here we carried out a study of a cell targeting peptide known as WQP having weak binding affinity for prostate specific membrane antigen, a known prostate cancer biomarker. We evaluated the effect of its multivalent targeting using polymeric NPs over its monomeric form on the cellular uptake in different prostate cancer cell lines. We developed a method of specific enzymatic digestion to quantify the number of WQPs on NPs having different surface valencies and observed that increasing valencies resulted in a higher cellular uptake of WQP-NPs over the peptide alone. We also found that WQP-NPs showed higher uptake in PSMA over-expressing cells, attributed to a stronger avidity for selective PSMA targeting. This kind of strategy can be useful for improving the binding affinity of a weak ligand as a means for selective tumor targeting.

14.
ACS Appl Bio Mater ; 6(1): 171-181, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36594422

RESUMO

The properties of nanoparticles (NPs) can change upon contact with serum components, occluding the NP surface by forming a biomolecular corona. It is believed that targeted NPs can lose their functionality due to this biological coating, thus losing specificity and selectivity toward target cells and leading to poor therapeutic efficiency. A better understanding of how the biomolecular corona affects NP ligand functionality is needed to maintain NP targeting capabilities. However, techniques that can quantify the functionality of NPs at a single-particle level in a complex medium are limited and often laborious in sample preparation, measurement, and analysis. In this work, the influence of serum exposure on the functionality of antibody-functionalized NPs was quantified using a straightforward total internal reflection fluorescence (TIRF) microscopy method and evaluated in cell uptake studies. The single-particle resolution of TIRF reveals the interparticle functionality heterogeneity and the substantial differences between NPs conjugated with covalent and noncovalent methods. Notably, only NPs covalently conjugated with a relatively high amount of antibodies maintain their functionality to a certain extent and still showed cell specificity and selectivity toward high receptor density cells after incubation in full serum. The presented study emphasizes the importance of single-particle functional characterization of NPs in complex media, contributing to the understanding and design of targeted NPs that retain their cell specificity and selectivity in biologically relevant conditions.


Assuntos
Imunoconjugados , Nanopartículas , Coroa de Proteína , Anticorpos
15.
ACS Sens ; 8(1): 80-93, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36655822

RESUMO

Characterization of the number and distribution of biological molecules on 2D surfaces is of foremost importance in biology and biomedicine. Synthetic surfaces bearing recognition motifs are a cornerstone of biosensors, while receptors on the cell surface are critical/vital targets for the treatment of diseases. However, the techniques used to quantify their abundance are qualitative or semi-quantitative and usually lack sensitivity, accuracy, or precision. Detailed herein a simple and versatile workflow based on super-resolution microscopy (DNA-PAINT) was standardized to improve the quantification of the density and distribution of molecules on synthetic substrates and cell membranes. A detailed analysis of accuracy and precision of receptor quantification is presented, based on simulated and experimental data. We demonstrate enhanced accuracy and sensitivity by filtering out non-specific interactions and artifacts. While optimizing the workflow to provide faithful counting over a broad range of receptor densities. We validated the workflow by specifically quantifying the density of docking strands on a synthetic sensor surface and the densities of PD1 and EGF receptors (EGFR) on two cellular models.


Assuntos
DNA , Microscopia de Fluorescência/métodos , DNA/química
16.
J Control Release ; 355: 228-237, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642253

RESUMO

Nanoparticles (NPs) are commonly functionalized using targeting ligands to drive their selective uptake in cells of interest. Typical target cell types are cancer cells, which often overexpress distinct surface receptors that can be exploited for NP therapeutics. However, these targeted receptors are also moderately expressed in healthy cells, leading to unwanted off-tumor toxicities. Multivalent interactions between NP ligands and cell receptors have been investigated to increase the targeting selectivity towards cancer cells due to their non-linear response to receptor density. However, to exploit the multivalent effect, multiple variables have to be considered such as NP valency, ligand affinity, and cell receptor density. Here, we synthesize a panel of aptamer-functionalized silica-supported lipid bilayers (SSLB) to study the effect of valency, aptamer affinity, and epidermal growth factor receptor (EGFR) density on targeting specificity and selectivity. We show that there is an evident interplay among those parameters that can be tuned to increase SSLB selectivity towards high-density EGFR cells and reduce accumulation at non-tumor tissues. Specifically, the combination of high-affinity aptamers and low valency SSLBs leads to increased high-EGFR cell selectivity. These insights provide a better understanding of the multivalent interactions of NPs with cells and bring the nanomedicine field a step closer to the rational design of cancer nanotherapeutics.


Assuntos
Nanopartículas , Neoplasias , Humanos , Receptores ErbB , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
17.
Int J Cancer ; 152(10): 2153-2165, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36705298

RESUMO

Tumor secreted extracellular vesicles (EVs) are potent intercellular signaling platforms. They are responsible for the accommodation of the premetastatic niche (PMN) to support cancer cell engraftment and metastatic growth. However, complex cancer cell composition within the tumor increases also the heterogeneity among cancer secreted EVs subsets, a functional diversity that has been poorly explored. This phenomenon is particularly relevant in highly plastic and heterogenous triple-negative breast cancer (TNBC), in which a significant representation of malignant cancer stem cells (CSCs) is displayed. Herein, we selectively isolated and characterized EVs from CSC or differentiated cancer cells (DCC; EVsCSC and EVsDCC , respectively) from the MDA-MB-231 TNBC cell line. Our results showed that EVsCSC and EVsDCC contain distinct bioactive cargos and therefore elicit a differential effect on stromal cells in the TME. Specifically, EVsDCC activated secretory cancer associated fibroblasts (CAFs), triggering IL-6/IL-8 signaling and sustaining CSC phenotype maintenance. Complementarily, EVsCSC promoted the activation of α-SMA+ myofibroblastic CAFs subpopulations and increased the endothelial remodeling, enhancing the invasive potential of TNBC cells in vitro and in vivo. In addition, solely the EVsCSC mediated signaling prompted the transformation of healthy lungs into receptive niches able to support metastatic growth of breast cancer cells.


Assuntos
Vesículas Extracelulares , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/patologia , Células-Tronco Neoplásicas/metabolismo , Pulmão/patologia , Microambiente Tumoral
18.
J Am Chem Soc ; 144(51): 23698-23707, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516974

RESUMO

Folding a polymer chain into a well-defined single-chain polymeric nanoparticle (SCPN) is a fascinating approach to obtaining structured and functional nanoparticles. Like all polymeric materials, SCPNs are heterogeneous in their nature due to the polydispersity of their synthesis: the stochastic synthesis of polymer backbone length and stochastic functionalization with hydrophobic and hydrophilic pendant groups make structural diversity inevitable. Therefore, in a single batch of SCPNs, nanoparticles with different physicochemical properties are present, posing a great challenge to their characterization at a single-particle level. The development of techniques that can elucidate differences between SCPNs at a single-particle level is imperative to capture their potential applications in different fields such as catalysis and drug delivery. Here, a Nile Red based spectral point accumulation for imaging in nanoscale topography (NR-sPAINT) super-resolution fluorescence technique was implemented for the study of SCPNs at a single-particle level. This innovative method allowed us to (i) map the small-molecule binding rates on individual SCPNs and (ii) map the polarity of individual SCPNs for the first time. The SCPN designs used here have the same polymeric backbone but differ in the number of hydrophobic groups. The experimental results show notable interparticle differences in the binding rates within the same polymer design. Moreover, a marked polarity shift between the different designs is observed. Interestingly, interparticle polarity heterogeneity was unveiled, as well as an intraparticle diversity, information which has thus far remained hidden by ensemble techniques. The results indicate that the addition of hydrophobic pendant groups is vital to determine binding properties and induces single-particle polarity diversity. Overall, NR-sPAINT represents a powerful approach to quantifying the single-particle polarity of SCPNs and paves the way to relate the structural heterogeneity to functionality at the single-particle level. This provides an important step toward the aim of rationally designing SCPNs for the desired application.


Assuntos
Nanopartículas , Polímeros , Polímeros/química , Nanopartículas/química , Catálise , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas
19.
Nanoscale Adv ; 4(20): 4402-4409, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321150

RESUMO

Antibody-functionalized nanoparticles (NPs) have shown numerous benefits in drug delivery and biosensing, improving the specificity of cell targeting and analyte detection, respectively. However, one of the main challenges is the lack of control over antibody orientation on the NP surface. Popular and easy conjugation strategies, such as carbodiimide-based conjugations, lead to a random orientation of antibodies on the NPs, compromising ligand functionality and contributing to undesired biological effects and reduced target recognition. While new methods for more controlled NP functionalization have been proposed, there is a lack of techniques that can elucidate the orientation of the antibodies at the single-particle level to determine the conjugation outcome and, therefore, the NPs' potential in selective targeting. Here, spectrally-resolved direct stochastic optical reconstruction microscopy (SR-dSTORM), an optical super-resolution technique, is introduced to quantify the relationship between total and functional NP conjugated cetuximab antibodies at the single-particle level. An evident single-particle heterogeneity in total and functional cetuximab is observed, leading to particles with different functional : total ratios. Additionally, the results indicate that the functional : total ratio of cetuximab highly depends on the conjugated cetuximab concentration. Overall, SR-dSTORM represents a direct approach for the NP structure-functionality relationship quantification, providing a platform to improve antibody-conjugated NPs characterization and facilitating their rational design.

20.
J Am Chem Soc ; 144(46): 21196-21205, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36368016

RESUMO

Supramolecular assemblies have been gaining attention in recent years in the field of drug delivery because of their unique formulation possibilities and adaptive behavior. Their non-covalent nature allows for their self-assembly formulation and responsiveness to stimuli, an appealing feature to trigger a therapeutic action with spatiotemporal control. However, facing in vivo conditions is very challenging for non-covalent structures. Dilution and proteins in blood can have a direct impact on self-assembly, destabilizing the supramolecules and leading to a premature and uncontrolled cargo release. To rationalize this behavior, we designed three monomers exhibiting distinct hydrophobic cores that self-assemble into photo-responsive fibers. We estimated their stability-responsiveness trade-off in vitro, finding two well-separated regimes. These are low-robustness regime, in which the system equilibrates quickly and responds readily to stimuli, and high-robustness regime, in which the system equilibrates slowly and is quite insensitive to stimuli. We probed the performance of both regimes in a complex environment using Förster resonance energy transfer (FRET). Interestingly, the stability-responsiveness trade-off defines perfectly the extent of disassembly caused by dilution but not the one caused by protein interaction. This identifies a disconnection between intrinsic supramolecular robustness and supramolecular stability in the biological environment, strongly influenced by the disassembly pathway upon protein interaction. These findings shed light on the key features to address for supramolecular stability in the biological environment.


Assuntos
Benzamidas , Benzeno , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...